# DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

# TABLE OF CONTENTS Section 00 01 10

|          | DIVISION 00 - SPECIAL SECTIONS                      |
|----------|-----------------------------------------------------|
| 00 01 10 | Table of Contents                                   |
| 00 01 15 | List of Drawing Sheets                              |
|          |                                                     |
|          | DIVISION 01 - GENERAL REQUIREMENTS                  |
| 01 00 00 | General Requirements                                |
| 01 00 11 | Medical Center Requirements                         |
| 01 33 23 | Shop Drawings, Product Data, and Samples            |
| 01 42 19 | Reference Standards                                 |
| 01 74 19 | Construction Waste Management                       |
|          |                                                     |
|          | DIVISION 26 - ELECTRICAL                            |
| 26 05 11 | REQUIREMENTS FOR ELECTRICAL INSTALLATIONS           |
| 26 05 13 | MEDIUM VOLTAGE CABLES                               |
| 26 05 21 | LOW VOLTAGE ELECTRICAL POWER CONDCUCTORS AND CABLES |
| 26 05 26 | GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS        |
| 26 05 33 | RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS            |
| 26 05 41 | UNDERGROUND ELECTRICAL CONSTRUCTION                 |
| 26 05 73 | COORDINATION STUDY                                  |
| 26 12 19 | PAD MOUNTED LIQUID FILLED MV TRANSFORMERS           |
| 26 24 16 | PANELBOARDS                                         |
|          |                                                     |
|          | DIVISION 31 - EARTHWORK                             |
| 31 20 00 | EARTHWORK                                           |

THIS PAGE LEFT INTENTIONALLY BLANK

# SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

| Drawing No. | <u>Title</u>                 |
|-------------|------------------------------|
| E-100       | OVERALL SITE PLAN            |
| ES101       | ELECTRICAL SITE PLAN - WEST  |
| ES102       | ELECTRICAL SITE PLAN - EAST  |
| ES103       | ELECTRICAL SITE PLAN - NORTH |
| E-501       | ELECTRICAL DETAILS           |
| E-502       | ELECTRICAL BUILDING PLANS    |
| E-601       | POWER RISER DIAGRAM          |
| E-602       | ELECTRICAL SCHEDULES         |

- - - END - - -

THIS PAGE LEFT INTENTIONALLY BLANK

# SECTION 01 00 00 GENERAL REQUIREMENTS

# TABLE OF CONTENTS

| 1.1 GENERAL INTENTION                                          | 1  |
|----------------------------------------------------------------|----|
| 1.2 STATEMENT OF BID ITEM(S)                                   | 1  |
| 1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR                 | 2  |
| 1.4 CONSTRUCTION SECURITY REQUIREMENTS                         | 2  |
| 1.5 FIRE SAFETY                                                | 3  |
| 1.6 OPERATIONS AND STORAGE AREAS                               | 5  |
| 1.7 ALTERATIONS                                                | 8  |
| 1.8 INFECTION PREVENTION MEASURES                              | 9  |
| 1.9 DISPOSAL AND RETENTION                                     |    |
| 1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, |    |
| UTILITIES, AND IMPROVEMENTS                                    |    |
| 1.11 RESTORATION                                               |    |
| 1.12 PHYSICAL DATA                                             |    |
| 1.13 LAYOUT OF WORK                                            | 11 |
| 1.14 AS-BUILT DRAWINGS                                         |    |
| 1.15 USE OF ROADWAYS                                           | 12 |
| 1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT      |    |
| 1.17 TEMPORARY USE OF EXISTING ELEVATORS                       | 12 |
| 1.18 TEMPORARY TOILETS                                         | 13 |
| 1.19 TESTS                                                     | 13 |
| 1.20 INSTRUCTIONS                                              |    |
| 1.21 HISTORIC PRESERVATION                                     | 15 |

# SECTION 01 00 00 GENERAL REQUIREMENTS

#### 1.1 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for the **Primary Voltage Upgrade**,

  Phase 2, Project 568-14-101, as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- D. Prior to commencing work, general contractor shall provide proof that a OSHA certified "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.

### E. Training:

- 1. All employees of general contractor or subcontractors shall have the 10-hour OSHA certified Construction Safety course and/or other relevant competency training, as determined by VA CP with input from the ICRA team.
- 2. Submit training records of all such employees for approval before the start of work.

# 1.2 STATEMENT OF BID ITEM(S)

- A. GENERAL CONSTRUCTION: the Contractor shall provide all labor, materials, tools, and equipment and necessary supervision to perform all work associated with this project as indicated on the Contract documents.
- B. <u>BASE BID</u>: All work associated with VA Project No. 568-14-101, Primary Voltage Upgrade, Phase 2 as indicated on the Contract documents.
- C. <u>DEDUCT ALTERNATE 1</u>: All work in BASE BID **minus** all work associated with providing three (3) spare transformers; 1 each-225kVA, 1 each-100kVA and 1 each-50kVA as shown on the contract drawings and contained in the contract documents.
- D. <u>DEDUCT ALTERNATE 2</u>: All work in BASE BID **minus** all work associated with providing three (3) spare transformers; 1 each-225kVA, 1 each-100kVA and 1 each-50kVA(Deduct Alternate #1) as shown on the contract drawings and contained in the contract documents, minus the following: (1) All work

associated with replacing the feeder to Garage 121;(2) All work associated with replacing the feeder to Building 48;(3) All work associated with replacing Panel 50B;(4) All work associated with increasing Panel 50A and the associated feeder and overcurrent devices from 125A to 200A as shown on the contract drawings and contained in the contract documents.

#### 1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. AFTER AWARD OF CONTRACT, the Contractor will be furnished electronic files of contract documents in .pdf format. The Contractor may produce as many sets of hard copy plans and specifications as needed, at Contractor's expense. The Contractor shall keep a full set of contract documents, including addendums and modifications on-site at all times during the work.

## 1.4 CONSTRUCTION SECURITY REQUIREMENTS

#### A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.

## B. Security Procedures:

- 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. For working outside the "regular hours" as defined in the contract,
  The General Contractor shall give 3 days notice to the Contracting
  Officer so that arrangements can be provided for the employees. This
  notice is separate from any notices required for utility shutdown
  described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

## C. Key Control:

1. The General Contractor shall provide duplicate keys and lock combinations to the Resident Engineer for the purpose of security

- inspections of every area of project including tool boxes and parked machines and take any emergency action.
- 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation.

#### 1.5 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
  - 1. American Society for Testing and Materials (ASTM):
    E84-2009.....Surface Burning Characteristics of Building
    Materials
  - 2. National Fire Protection Association (NFPA):

| 10-2010Standard for Portable Fire Extinguishers      |
|------------------------------------------------------|
| 30-2008Flammable and Combustible Liquids Code        |
| 51B-2009Standard for Fire Prevention During Welding, |
| Cutting and Other Hot Work                           |
| 70-2011National Electrical Code                      |
| 241-2009Standard for Safeguarding Construction,      |

Alteration, and Demolition Operations

- Occupational Safety and Health Administration (OSHA):
   CFR 1926......Safety and Health Regulations for Construction
- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Project Engineer for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).

- E. Temporary Construction Partitions:
  - No temporary partitions will be required. Contractor is to provide and maintain suitable barriers to prevent unauthorized access to work areas.
  - Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Project Engineer.
- H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Project Engineer.
- I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- K. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Project Engineer. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- L. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Project Engineer.
- M. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Project Engineer. Obtain permits from facility Fire Department at least 24 hours in advance.
- N. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Project Engineer.

- O. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- P. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- Q. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.

#### 1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as determined by the Resident Engineer.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment,

and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by Resident Engineer where required by limited working space.

- 1. Do not store materials and equipment in other than assigned areas.
- 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
- 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- G. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer. All such actions shall be coordinated with the Utility Company involved:
  - Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- H. Phasing: To insure such executions, Contractor shall furnish the Resident Engineer with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the Resident Engineer two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, Resident Engineer and Contractor.
- I. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone),

they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer.

- 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Resident Engineer. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval.
- 2. Contractor shall submit a request to interrupt any such services to Resident Engineer, in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer.
- 5. In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- J. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- K. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
  - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.

L. Coordinate the work for this contract with other construction operations as directed by Resident Engineer. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

#### 1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the Resident Engineer of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of Resident Engineer, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
  - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
  - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
  - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
  - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

#### 1.8 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group as specified here. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to Project Engineer for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
  - 1. All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- C. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold.
  - Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by Resident Engineer. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction.
  - 2. Do not perform dust producing tasks within occupied areas without the approval of the Resident Engineer. For construction in any areas that will remain jointly occupied by the medical Center and Contractor's workers.

## D. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.

# 1.9 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
  - 1. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.

# 1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

#### 1.11 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Resident Engineer. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged.

  Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing

- piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

#### 1.12 PHYSICAL DATA

A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.

#### 1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

### 1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the Resident Engineer within 15 calendar days after each

- completed phase and after the acceptance of the project by the Resident Engineer.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

#### 1.15 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the Resident Engineer, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.

#### 1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
  - 1. Permission to use each unit or system must be given by Resident Engineer. If the equipment is not installed and maintained in accordance with the following provisions, the Resident Engineer will withdraw permission for use of the equipment.
  - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.

## 1.17 TEMPORARY USE OF EXISTING ELEVATORS

A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:

1. Contractor makes all arrangements with the Resident Engineer for use of elevators. The Resident Engineer will ascertain that elevators are in proper condition. Personnel for operating elevators will not be provided by the Department of Veterans Affairs.

#### 1.18 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by Resident Engineer, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

#### **1.19 TESTS**

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer.

  Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

#### 1.20 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (four copies each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

# 1.21 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the Resident Engineer verbally, and then with a written follow up.

- - - E N D - - -

# **Medical Center Requirements**

# **Section 010100**

1.0 General Intention: This document pertains to station safety, health, and environmental policies for construction projects performed at the VA Black Hills Health Care System. Safety and health concerns are taken seriously at this facility. Both our staff and yours are expected to strictly adhere to the regulations and requirements. This is exceedingly important, since we must be primarily concerned for the safety of our patients. In this regard, OSHA Standards may protect worker safety and health, but they have minimal benefit for protecting the safety and health of our patients, due primarily to their differing medical conditions. Review this information as orientation with your personnel performing work on site. In addition, construction can have significant impacts to the environment. It is the policy of this organization to minimize impacts in accordance with the facility's integrated Green Environmental Systems (GEMS). Where the requirements as outlined in this and Section 010000 are differing, the more stringent shall apply.

# 2.0 Requirements:

# A. Security:

- 1. Secure all construction areas, especially mechanical and electrical rooms against entry of unauthorized individuals including patients.
- 2. Notify the Contracting Officer's Technical Representative (COTR) for permission to work after hours and weekends. Standard work hours for the medical center are Monday–Friday, 7:00 a.m. to 4:30 p.m.
- 3. The VA will issue ID tags to contractor personnel. All contractor personnel are required to wear the VA provided ID at all times while working on government property. The Contractor will submit ID requests for each employee (including subcontractor employees) using the request form on attachment A.

# B. Key Security:

- 1. Only a limited number of keys will be issued to the contractor. Key requests shall be made using the request form on attachment B.
- 2. If the Contractor loses a key, a charge of \$30 will be billed for a replacement key.
- 3. Ensure all doors leading to and from construction are either monitored or locked to prevent access to the area from unauthorized persons.

# C. Contractor General Safety Program and Training Requirements:

1. The Contractor shall appoint a "Competent Person" (CP) for the project. The CP will have primary responsibility for construction safety, OSHA compliance, and adherence to the Contractor's safety program. The Contractor shall provide for approval, as part of the submittal process, the name of the CP and documentation that the individual has had the necessary training, experience, and has the authority to carry out their responsibilities with respect to safety and health during construction activities. Evidence of training shall include completion of OSHA approved courses or other construction safety training consistent with the scope of the project.

- 2. The Contractor shall also provide for approval, as part of the submittal process, evidence of a company safety policy that includes, as a minimum, the following components: a) Safety is the first priority and will not be compromised, b) PPE is provided for employees, and the employees are trained in its use, c) Details of regularly scheduled safety training for jobs site employees in regards to OSHA requirements, construction related impacts, and Life Safety Code requirements. This may be accomplished through documented "tool box talks", or other similar methods.
- 3. The Contractors CP and primary workers will be required to view a VA provided video tape, "Playing It Safe", approximate viewing time 15 minutes. The video identifies concerns regarding patients safety, privacy, and infection control; and introduces Contractor's workers to the unique safeguards required when working in a hospital environment.

# 4. Adhere to the following:

- Follow all federal, state and local safety and health regulations.
- Maintain safety in the construction site/area in accordance with the provisions of the contract that includes the Occupational Safety and Health Administration (OSHA) Regulations; National Electrical Codes; National Fire Protection Association (NFPA) 70, National Electric Code; and NFPA 101, Life Safety Code. Work in a safe manner and take all proper precautions while performing your work. Extra precautions shall be taken when working around persons occupying the building during construction.
- Provide Personal Protective Equipment (PPE) for your employees.
- Post appropriate signs in specific hazardous areas.
- Keep tools, ladders, etc., away from patients to prevent injuries.

# D. Safety Inspections:

- The VA professional Occupational Safety and Health staff at this facility will
  perform safety inspections of all contract operations. Written reports of unsafe
  practices or conditions will be reported to the COTR and Contracting Officer for
  immediate attention and resolution.
- 2. The Contractor's superintendent/CP is required to monitor work on a daily basis, including surveillance related to health and safety. The daily inspections are to be documented via the check list included on the back of the Daily Log form (attachment C). Completed Daily Logs should be provided to the COTR at the end of each shift, and no later than the next working day.

#### E. Fire Alarms:

- 3. The fire alarm system connects all buildings at this facility, and is activated by various heat, duct, manual pull stations and smoke sensors. Manual pull stations are provided at each entrance. Survey the area in which you are working to locate the manual pull stations.
- 4. In the event of a fire alarm sounding, you are to remain in your area, unless medical center personnel (Safety, Nursing or Engineering) instruct otherwise, or

- unless a fire situation is in your area, in which case you should immediately evacuate.
- 5. Any work involving the fire protection systems requires written permission to proceed from the COTR. Do not tamper with or otherwise disturb any fire alarm system components without prior written permission. To do so without written permission will result in an adverse action.

#### F. Hazardous Materials:

- Many of the operations you are scheduled to perform may involve the use of hazardous materials. Prior to locating hazardous materials on site, submit all Material Safety Data Sheets (MSDS) through the COTR for evaluation by the facility Safety Officer.
- 2. Storage of hazardous materials within buildings shall be minimal with only enough on hand to perform daily work tasks. Flammable materials must either be removed from buildings at the end of the work shift or stored in approved flammable storage containers.
- 3. Care must be taken to ensure adequate ventilation to remove vapors of hazardous materials in use. Many of the patients being cared for in the facility are susceptible to environmental contaminants, even when odors seem minimal. Isolate those areas where vapors are produced, and ventilate to the most extent possible to reduce the number of complaints.

# G. Airborne Dust Control During Construction:

1. Generation of dust is of major concern within staff, and especially in patient occupied buildings. Where operations involve the generation of dust, all efforts shall be directed at reducing airborne generated dust to the lowest level feasible. This may be accomplished by a number of methods. These include misting the area with water, or use of tools attached to high efficiency particulate air (HEPA) filtering vacuums. Where large amounts of materials may be disturbed, resulting in airborne dust, establishment of full ceiling-to-floor barriers shall be required.

# 2. Classification of Jobs:

- a. CLASS I Includes, but is not limited to, minor disturbances involving plumbing, electrical, carpentry, ductwork and minor aesthetic improvements.
- b. CLASS II (projects require barrier precautions) Includes, but is not limited to, construction of new walls, construction of new rooms, major utility changes, major equipment installation, demolition of wallboards, plaster, ceramic tiles or ceiling and floor tiles, removal of windows, removal of casework, etc.

# H. Class I Procedures:

1. Mist (with water) work surfaces to control dust while cutting. Alternatively a high efficiency particulate air vacuum (HEPA) can be used by positioning the vacuum next to the equipment at the use site.

- 2. Tape doors for activities that produce large amounts of dust, and block off and seal air vents.
- 3. Cover holes/openings (penetrations), in walls, ceiling, floors or door that cannot be patched or fixed within 4 hours. Only approved fire-rated materials will be used to fill holes in fire/smoke walls.
- 4. Comply with the OSHA regulations regarding noise and vapor containment.
- 5. Cleanup and disposal: Construction waste must be contained before transport using plastic bags and/or covered transport receptacle and/or cart and tape covering.
- 6. Wet mop and/or HEPA vacuum before leaving work area.
- 7. Place dust mats at entrance and exit of work area, and clean or change daily to prevent tracking of dust into occupied areas.
- 8. After work completion, remove covering from air vents.
- I. Class II (Post Construction Warning Signs):
  - 1. Same procedures as Class I however, use of a HEPA vacuum is mandatory.
  - 2. Construct all dust barriers before construction begins per the following instructions: For single rooms, seal door/frame with tape and plastic. The sheet should be divided vertically with a knife. Flaps should be taped on either side of the single sheet to create a flapped entrance.
  - 3. For larger areas, install an airtight (fire retardant) barrier that extends from floor to ceiling, or seal to prevent dust and debris from escaping. Seal all seams with duct tape. Install barrier partitions to stop movement of air and debris penetrating ceiling envelopes, chases and/or ceiling spaces. Construct entrance with a double flap of plastic to prevent escape of debris; or, if elevator shafts or stairways are within the field of construction, install solid barriers.
- J. Contact with Asbestos Containing Materials (ACM):
  - Due to the age of buildings, many contain asbestos containing materials (ACM).
     Primary ACM uses in the medical center includes floor tile, mastic, piping and
     HVAC insulation. The medical center has performed a comprehensive asbestos
     survey and has identified accessible ACM. Some areas contain damaged asbestos
     and should not be accessed without prior abatement.
  - 2. The most common type of ACM insulation you may encounter includes thermal system insulation (TSI) and floor tile. ACM TSI is generally covered with a cloth wrap or lagging, and the asbestos substrate generally appear white in color. *Do not sand, drill, gouge or otherwise disturb this type of insulation.* Contractors disturbing or releasing asbestos containing materials will be liable for all damages and cleanup costs.
  - 3. Where disturbance of asbestos is likely, it has been addressed in the contract for removal. If contact with the presence of asbestos is presented, stop all work in the immediate area and immediately contact the COTR or Safety Officer to make necessary arrangements for removal.

- 4. In some areas, asbestos insulation has been identified on elbows, between fiberglass piping insulation, as patching materials among the fiberglass insulation. Fiberglass insulation used in this facility is usually yellow or pink in color, wrapped either by cloth or paper lagging.
- 5. A complete assessment of asbestos materials and conditions are available for viewing by contacting the COTR. Prior to performing work above any ceiling or starting in a new area, consult with the COTR concerning existing conditions of ACM.
- 6. Some of the areas in the facility are identified as restricted areas due to condition of ACM. These are readily labeled. *Do not enter these areas* unless first contacting the COTR. Entry requirements to these areas are awareness of the hazards, proper protective clothing (coveralls and respirators) and personal monitoring in accordance with OSHA requirements.

### K. Environmental Protection:

- 1. It may help you to be aware of the seriousness that the environmental protection requirements of each contract are regarded. Adherence to these requirements is subject to continuing scrutiny from the community and backed by severe penalties, such as fines and incarceration. These environmental requirements will be strictly enforced. Contractors are required to abide by all Federal, State, and Local environmental regulations.
- 2. *No* hazardous materials will be disposed of on Government property. Haul all waste off-site or dispose in contractor owned and operated waste removal containers.
- 3. Forward a copy of all waste manifests for special or hazardous wastes to the COTR. Environmental requirements will be strictly enforced.

# L. Permit Required Confined Spaces:

- 1. Contractors performing work on this facility shall follow all requirements outlined in OSHA Standards for working in confined spaces. There are numerous permit required confined spaces on this facility. These spaces have been identified. Some spaces have been posted, but the majority have not due to their configuration. A complete listing of these areas is located in the Fire Department.
- 2. Confined spaces are areas that are large enough to be entered, have limited egress/exit potential and are not designed for permanent human occupancy. If you encounter any space that meets this definition, and if it is a suspected confined space, contact the COTR.
- 3. Contractors performing work in confined spaces are responsible for compliance with all applicable standards and regulations.

# M. Housekeeping:

- Protect patients and VA personnel in occupied areas from the hazards of dust, noise, construction debris and material associated with a construction environment. Keep work area clear, clean and free of loose debris, construction materials and partially installed work that would create a safety hazard or interfere with VA personnel duties and traffic.
- 2. Wet mop occupied areas clean and remove any accumulation of dust/debris from cutting or drilling from any surface at the end of each workday.

- 3. Make every effort to keep dust and noise to a minimum at all times. Take special precautions to protect VA equipment from damage including excessive dust.
- 4. Maintain clear access to mechanical, electrical devices, equipment and main corridors. This will ensure access to existing systems in the event of an emergency.
- 5. Clean area of all construction debris and dust upon completion of demolition and/or renovation.
- 6. During construction operations, keep existing finishes protected from damage. Cover and protect all carpets during construction. Any carpets or surfaces damaged as a result of construction activities will be replaced at the contractor expense.

# N. Hot Work Permits:

- 1. Any hot work operations including cutting, welding, thermal welding, brazing, soldering, grinding, thermal spraying, thawing pipes or any other similar activity, require a Hot Work Permit to be obtained by the Contractor from the Fire Department. The Contractor is responsible for conforming to all Medical Center regulations, policies and procedures concerning Hot Work Permits as outlined below:
  - a. Prior to the performance of hot work in patient-occupied buildings, request a Hot Work Permit from the Fire Department.
  - b. The Fire Department will inspect the area and ensure that the requirements of NFPA 241 and OSHA standards have been satisfied. The Hot Work Permit will be granted and must be posted in the immediate area of the work.
  - c. The Hot Work Permit will apply only to the location identified on the permit. If additional areas involve hot work, additional permits must be requested.
  - d. Upon completion of all hot work, notify the Fire Department to perform a reinspection of the area.
- 2. Do not use any of the extinguishers in the medical center for standby purpose while conducting hot work. Contractors are required to supply their own Class ABC extinguishers. Medical center extinguishers are only to be used in the event of a fire.
- O. Emergency Medical Services: Emergency medical services for stabilization purposes are available for contractors at this facility. For medical emergencies, dial 6911 when inside any building. Report the nature of the emergency and location. The operator will dispatch in-house personnel or coordinate an outside emergency assistance based on the nature of the emergency.
- P. Use of Government-Owned Material and Equipment: Use of Government-owned material and equipment is *prohibited*.
- Q. Superintendent Communications: At all times during the performance of this contract, the Contractors Superintendent is to be available by cellular phone. At the beginning of the contract and prior to beginning any construction, supply the COTR with the telephone number for the Superintendent.
- R. Parking: Contractor employees shall be assigned a parking area during the preconstruction meeting.

# S. Traffic:

- 1. Traffic hazards are minimal at this facility. Drivers should be particularly concerned with pedestrian traffic.
- 2. Seat belt use is mandatory on the station.
- 3. Federal police officers maintain a 24-hour patrol of the area.
- 4. Speed limits are to be observed, and are strictly enforced.
- T. Contractor's Trailers: Contractor's trailers shall be located at the area assigned. All utility connections to the trailer shall be installed at the contractor expense. Trailer removal is required upon completion of the contract, unless approved by the COTR to leave in place.
- U. Smoking: No smoking is permitted in buildings or around hazardous areas. Any smoking inside a government building is subject to a fine without warning.
- V. Lock out/tag out: Contractors performing work on equipment and systems are responsible for compliance with the facilities lock out/tag out policies.
- W. Road Closures: For any work requiring closure of a road or parking lot, a request for closure shall be made in writing at least 5 days in advance for approval by the COTR and Fire Department.

## Attachments:

- A. Contractor ID Badge Request Form.
- B. Contractor Key Request Form.
- C. Contractor Daily Log Form.

# SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
  - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
  - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
  - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR

- 52.243-4) and CHANGES SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.
- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid.

  Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
  - A. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified.
  - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
    - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
    - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
    - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
  - C. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission

by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.

- 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
- 2. Reproducible shall be full size.
- 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
- 4. A space 120 mm by 125 mm (4-3/4) by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp.
- 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
- 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
- 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

#### **TSP**

# Architectural, Engineering, Planning

# 1112 N. West Street

#### Sioux Falls, SD 57104

1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

---END---

# SECTION 01 42 19 REFERENCE STANDARDS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.
- 1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)
  - A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
  - B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

# 1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

A. The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

# 1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

A. The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA American Gear Manufacturers Association, Inc.

http://www.agma.org

AHAM Association of Home Appliance Manufacturers

http://www.aham.org

AISC American Institute of Steel Construction

http://www.aisc.org

AISI American Iron and Steel Institute

http://www.steel.org

AITC American Institute of Timber Construction

http://www.aitc-glulam.org

AMCA Air Movement and Control Association, Inc.

http://www.amca.org

ANLA American Nursery & Landscape Association

http://www.anla.org

http://www.ansi.org APA The Engineered Wood Association http://www.apawood.org ARI Air-Conditioning and Refrigeration Institute http://www.ari.org American Society of Agricultural Engineers ASAE http://www.asae.org ASCE American Society of Civil Engineers http://www.asce.org ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org ASME American Society of Mechanical Engineers http://www.asme.org ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org ASTM American Society for Testing and Materials http://www.astm.org AWI Architectural Woodwork Institute http://www.awinet.org AWS American Welding Society http://www.aws.org AWWA American Water Works Association http://www.awwa.org BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com BIA Brick Institute of America http://www.bia.org CAGI Compressed Air and Gas Institute http://www.cagi.org CGA Compressed Gas Association, Inc. http://www.cganet.com CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org CISPI Cast Iron Soil Pipe Institute http://www.cispi.org Chain Link Fence Manufacturers Institute CLFMI http://www.chainlinkinfo.org

American National Standards Institute, Inc.

ANSI

СРМВ Concrete Plant Manufacturers Bureau http://www.cpmb.org CRA California Redwood Association http://www.calredwood.org CRSI Concrete Reinforcing Steel Institute http://www.crsi.org CTI Cooling Technology Institute http://www.cti.org DHI Door and Hardware Institute http://www.dhi.org EGSA Electrical Generating Systems Association http://www.egsa.org EEI Edison Electric Institute http://www.eei.org EPA Environmental Protection Agency http://www.epa.gov ETL ETL Testing Laboratories, Inc. http://www.et1.com FAA Federal Aviation Administration http://www.faa.gov FCC Federal Communications Commission http://www.fcc.gov FPS The Forest Products Society http://www.forestprod.org GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/ FΜ Factory Mutual Insurance http://www.fmglobal.com GΑ Gypsum Association http://www.gypsum.org General Services Administration GSA http://www.gsa.gov ΗI Hydraulic Institute http://www.pumps.org HPVA Hardwood Plywood & Veneer Association http://www.hpva.org ICBO International Conference of Building Officials http://www.icbo.org ICEA Insulated Cable Engineers Association Inc. http://www.icea.net

\ICAC Institute of Clean Air Companies

http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers

http://www.ieee.org\

IMSA International Municipal Signal Association

http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association

http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings

Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers

http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association

http://www.phccweb.org.org

NBS National Bureau of Standards

See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors

http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

http://www.nema.org

NFPA National Fire Protection Association

http://www.nfpa.org

NHLA National Hardwood Lumber Association

http://www.natlhardwood.org

NIH National Institute of Health

http://www.nih.gov

NIST National Institute of Standards and Technology

http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

18928 Premiere Court Gaithersburg, MD 20879

(301) 670-0604

NSF National Sanitation Foundation

http://www.nsf.org

NWWDA Window and Door Manufacturers Association http://www.nwwda.org OSHA Occupational Safety and Health Administration Department of Labor http://www.osha.gov PCA Portland Cement Association http://www.portcement.org PCI Precast Prestressed Concrete Institute http://www.pci.org PPI The Plastic Pipe Institute http://www.plasticpipe.org PEI Porcelain Enamel Institute, Inc. http://www.porcelainenamel.com PTI Post-Tensioning Institute http://www.post-tensioning.org The Resilient Floor Covering Institute RFCI http://www.rfci.com RIS Redwood Inspection Service See - CRA RMA Rubber Manufacturers Association, Inc. http://www.rma.org SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org Steel Door Institute SDI http://www.steeldoor.org IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org SJI Steel Joist Institute http://www.steeljoist.org SMACNA Sheet Metal and Air-Conditioning Contractors National Association, Inc. http://www.smacna.org The Society for Protective Coatings SSPC http://www.sspc.org STI Steel Tank Institute http://www.steeltank.com SWI Steel Window Institute http://www.steelwindows.com TCA Tile Council of America, Inc. http://www.tileusa.com

TEMA Tubular Exchange Manufacturers Association

http://www.tema.org

TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719 (608) 833-5900

UBC The Uniform Building Code

See ICBO

UL Underwriters' Laboratories Incorporated

http://www.ul.com

ULC Underwriters' Laboratories of Canada

http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau

6980 SW Varns Road, P.O. Box 23145

Portland, OR 97223

(503) 639-0651

WRCLA Western Red Cedar Lumber Association

P.O. Box 120786

New Brighton, MN 55112

(612) 633-4334

WWPA Western Wood Products Association

http://www.wwpa.org

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

# SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, at least 50% of non-hazardous waste material shall be salvaged, recycled or reused in order to comply with Executive Order 13514.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
  - 1. Waste Management Plan development and implementation.
  - 2. Techniques to minimize waste generation.
  - 3. Sorting and separating of waste materials.
  - 4. Salvage of existing materials and items for reuse or resale.
  - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
  - 1. Soil.
  - 2. Inerts (eg, concrete, masonry and asphalt).
  - 3. Clean dimensional wood and palette wood.
  - 4. Green waste (biodegradable landscaping materials).
  - 5. Engineered wood products (plywood, particle board and I-joists, etc).
  - 6. Metal products (eg, steel, wire, beverage containers, etc).
  - 7. Cardboard, paper and packaging.
  - 8. Bitumen roofing materials.
  - 9. Plastics (eg, ABS, PVC).
  - 10. Carpet and/or pad.
  - 11. Gypsum board.
  - 12. Insulation.
  - 13. Paint.

## 1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Lead Paint: Section 02 83 33.13, LEAD BASED PAINT REMOVAL AND DISPOSAL.

## 1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
  - 1. Excess or unusable construction materials.
  - 2. Packaging used for construction products.
  - 3. Poor planning and/or layout.
  - 4. Construction error.
  - 5. Over ordering.
  - 6. Weather damage.
  - 7. Contamination.
  - 8. Mishandling.
  - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to reuse and recycle new materials to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org provides a Construction Waste Management Database that contains information on companies that haul. Collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

## 1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
  - 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
  - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

#### 1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
  - 1. Procedures to be used for debris management.
  - 2. Techniques to be used to minimize waste generation.
  - 3. Analysis of the estimated job site waste to be generated:

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
  - a. On site: Material separation, storage, protection where applicable.
  - b. Off site: Transportation means and destination. Include list of materials.
    - 1) Description of materials to be site-separated and self-hauled to designated facilities.
    - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
  - c. The names and locations of mixed debris reuse and recycling facilities or sites.
  - d. The names and locations of trash disposal landfill facilities or sites.
  - e. Documentation that the facilities or sites are approved to receive the materials.
- B. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- C. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

## 1.6 APPLICABLE PUBLICATIONS

Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.

A. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

## 1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

## PART 2 - PRODUCTS

## 2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

## PART 3 - EXECUTION

## 3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

#### 3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

# 3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices.

  Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

# SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cables, capacitors, sectionalizing switches, and other items and arrangements for the specified items are shown on drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the utility's system shall conform to the utility's requirements. Coordinate fuses, circuit breakers and relays with the utility's system, and obtain utility approval for sizes and settings of these devices.
- D. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

## 1.2 MINIMUM REQUIREMENTS

- A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

## 1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters

Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL

Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings.

## B. Definitions:

- 1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified; equipment or product which:
  - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
  - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
  - c. Bears a label, tag, or other record of certification.
- 4. Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

# 1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
  - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
  - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

## 1.5 APPLICABLE PUBLICATIONS

A. Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

# 1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
  - Components of an assembled unit need not be products of the same manufacturer.
  - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
  - 3. Components shall be compatible with each other and with the total assembly for the intended service.
  - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
  - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
  - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
  - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

## 1.7 EQUIPMENT REQUIREMENTS

A. Where variations from the contract requirements are requested in accordance with Section 00 72 00, GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

## 1.8 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
  - 1. Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to switchgear, switchboards, panelboards, transformers, motor control centers, motor controllers, uninterruptible power systems, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
  - 2. During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
  - 3. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
  - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
  - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

## 1.9 WORK PERFORMANCE

- A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:

- 1. Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
- 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.
- 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
- 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer.
- D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interferences.

# 1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces shall not be less than specified in the NEC for all voltages specified.
- C. Inaccessible Equipment:
  - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
  - 2. "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

## 1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm²), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

# 1.12 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.

- 1. Mark the submittals, "SUBMITTED UNDER SECTION\_\_\_\_\_".
- 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- 3. Submit each section separately.
- E. The submittals shall include the following:
  - Information that confirms compliance with contract requirements.
     Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
  - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
  - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
  - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
  - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
  - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
  - 4. The manuals shall include:
    - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
    - b. A control sequence describing start-up, operation, and shutdown.
    - c. Description of the function of each principal item of equipment.
    - d. Installation instructions.
    - e. Safety precautions for operation and maintenance.
    - f. Diagrams and illustrations.

- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
  - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
  - 2. Each type of conduit coupling, bushing and termination fitting.
  - 3. Conduit hangers, clamps and supports.
  - 4. Duct sealing compound.
  - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

## 1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

## 1.14 ACCEPTANCE CHECKS AND TESTS

A. The contractor shall furnish the instruments, materials and labor for field tests.

## 1.15 TRAINING

- A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

- - - E N D - - -

# SECTION 26 05 13 MEDIUM VOLTAGE CABLES

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium voltage cables, splices, and terminations.

## 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirement and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium voltage cables.
- E. Section 31 20 00, EARTH MOVING: Bedding of conduits.

## 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 FACTORY TESTS

A. Medium voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

## 1.5 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
  - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
  - 2. Include product and installation information for cables, splices, terminations, and fireproofing tape.

## C. Certifications:

- 1. Factory Test Reports: Prior to installation of the cables, deliver four copies of the manufacturers certified NEMA WC 71 or WC 74 standard factory test reports to the Resident Engineer. Certified copies of test data shall show conformance with the referenced standards and shall be approved prior to delivery of cable.
- 2. Compatibility: Provide certification from the cable manufacturer that the splices and terminations are approved for use with the cable.
- 3. Field Test Reports: Test reports shall comply with the paragraph entitled "Acceptance Checks and Tests." After testing, submit four certified copies to the Resident Engineer of each of the graphs specified under field testing.
- 4. After splices and terminations have been installed and tested, deliver four copies of a certificate by the contractor to the Resident Engineer which includes the following:
  - a. A statement that the materials, detail drawings, and printed instructions used are those contained in the kits approved for this contract.
  - b. A statement that each splice and each termination was completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
  - c. A statement that field-made splices and terminations conform to the following requirements:
    - 1) Pencil the cable insulation precisely.
    - 2) Connector installations:
      - a) Use tools that are designed for the connectors being installed.
      - b) Round and smooth the installed connectors to minimize localized voltage stressing of the insulating materials.
    - 3) Remove contaminants from all surfaces within the splices and terminations before installing the insulating materials.
    - 4) Solder block throughout stranded grounding wires that might penetrate the splicing and terminating materials.
    - 5) Use mirrors to observe the installation of materials on the backsides of the splices and terminations.
    - 6) Eliminate air voids throughout the splices and terminations.
    - 7) Stretch each layer of tape properly during installation.

d. List all the materials purchased and installed for the splices and terminations for this contract, including the material descriptions, manufacturers' names, catalog numbers, and total quantities.

## D. Installer Approval:

- 1. Employees who install splices and terminations and test the cables shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the kits.
- 2. Furnish satisfactory proof of such experience for each employee who splices or terminates the cables.

## 1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only:

American Society for Testing and Materials (ASTM):

B3-01 (R2007)......Standard Specification for Soft or Annealed Copper Wire

- B. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

  386-95 (R2001)......Separable Insulated Connector Systems for Power

  Distribution Systems above 600 V

  400-01......Guide for Field Testing and Evaluation of the
  - 400.2-05......Guide for Field Testing of Shielded Power Cable

    Systems Using Very Low Frequency (VLF)

Insulation of Shielded Power Cable Systems

- 404-00.....Extruded and Laminated Dielectric Shielded

  Cable Joints Rated 2500-500,000 Volts
- C. National Electrical Manufacturers Association (NEMA):
  - WC 71-99......Standard for Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electrical Energy (ICEA S-96-659)
  - WC 74-06......5-46 KV Shielded Power Cable for Use in the

    Transmission and Distribution of Electrical

    Energy (ICEA S-93-969)

- D. National Fire Protection Association (NFPA):
  - 70-08......National Electrical Code (NEC)
- E. Underwriters Laboratories (UL):
   1072-06 ...... Medium-Voltage Power Cables

# 1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or field-installed heat-shrink cable end seals.

## PART 2 - PRODUCTS

## 2.1 MEDIUM VOLTAGE CABLE

- A. Medium voltage cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
  - 15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.
- D. Insulation:
  - 1. Insulation level shall be 133%.
  - 2. Types of insulation:
    - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
    - b. Cable type abbreviation, CCLP: Polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically crosslinked.
    - c. In wet locations, anti-tree CCLP or EPR shall be used.
    - d. Cable type abbreviation, XLPE: cross-linked polyethylene insulated shielded shall be thermosetting, light and heat stabilized and chemically cross-linked.
- E. Conductors and insulation shall be wrapped separately with semiconducting tape.
- F. Insulation shall be wrapped with non-magnetic, metallic shielding tape, helically-applied over semi-conducting insulation shield.

- G. Heavy duty, overall protective jacket of chlorosulphonated polyethylene or polyvinyl chloride shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

#### 2.2 SPLICES AND TERMINATIONS

- A. The materials shall be compatible with the cables.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and handholes, the splices shall be submersible.
- C. Where the Government determines that unsatisfactory splices and terminations have been installed, the contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.
- D. Splices and Terminations:
  - 1. Materials shall be designed for the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.

## 2. Terminations:

- a. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
- b. Class 3 terminations for outdoor use: Kit with stress cone and compression-type connector.
- c. Load-break terminations for indoor and outdoor use: Elbow-type unit with test point and 200-A load make/break and continuouscurrent rating.

## 2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 7 mils [0.18 mm] thick, and 0.75 in [19 mm] wide.

# PART 3 - EXECUTION

## 3.1 GENERAL

A. Installation shall be in accordance with the NEC, as shown on the drawings, and per cable manufacturer's instructions.

- B. Cable shall be installed in conduit above grade and duct bank below grade. All cables of a feeder shall be pulled simultaneously.
- C. Splice the cables only in manholes and accessible pullboxes.
- D. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- E. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the cable manufacturer.
- F. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- G. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

#### 3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 6 in [150 mm] above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

# 3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of trained personnel and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.

- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. No splices shall be pulled in ducts. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

#### 3.4 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pull-boxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 1 in [25 mm] into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

## 3.5 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

## 3.6 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations.

  Include the following visual and electrical inspections.
- B. Test equipment and labor and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the Resident Engineer.
- C. Visual Inspection:
  - 1. Inspect exposed sections of cables for physical damage.
  - 2. Inspect shield grounding, cable supports, splices, and terminations.
  - 3. Verify that visible cable bends meet manufacturer's minimum published bending radius.
  - 4. Verify installation of fireproofing tape and identification tags.
- D. Electrical Tests:
  - 1. Acceptance tests shall be performed on new and service-aged cables as specified herein.
  - 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:
  - 1. Maintenance tests shall be performed on service-aged cable interconnected to new cable.
  - 2. After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
  - 1. Test data shall include megohm readings and leakage current readings. Cable shall not be energized until insulation-resistance test results have been approved by the Resident Engineer. Test voltages and minimum acceptable resistance values shall be:

| Voltage Class | Test Voltage | Min. Insulation Resistance |
|---------------|--------------|----------------------------|
| 15kV          | 2,500 VDC    | 5,000 megohms              |

2. Provide a comprehensive report that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.

- G. Online Partial Discharge Test: Comply with IEEE 400 and 400.3. Test all new and service-aged cables. Perform tests after cables have passed the insulation-resistance test, and after successful energization.
  - 1. Testing shall use a time or frequency domain detection process, incorporating radio frequency current transformer sensors with a partial discharge detection range of 10 kHz to 300 MHz.
  - 2. Provide a comprehensive report that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and numerically and graphically identifies the magnitude of partial discharge detected for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be energized until recorded test data have been approved by the Resident Engineer. Final test reports shall be provided to the Resident Engineer.

- - - E N D - - -

THIS PAGE INTENTIONALLY LEFT BLANK

# SECTION 26 05 21 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW)

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring.

## 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of low-voltage conductors and cables in manholes and ducts.

## 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 FACTORY TESTS

A. Low voltage cables shall be thoroughly tested at the factory per NEMA WC-70 to ensure that there are no electrical defects. Factory tests shall be certified.

## 1.5 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
  - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
  - 2. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
    - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
    - b. Certification by the contractor that the materials have been properly installed, connected, and tested.

## 1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):
  D2301-04.....Standard Specification for Vinyl Chloride
  Plastic Pressure-Sensitive Electrical Insulating
  Tape
- C. National Fire Protection Association (NFPA):
   70-08......National Electrical Code (NEC)
- D. National Electrical Manufacturers Association (NEMA):
  WC 70-09......Power Cables Rated 2000 Volts or Less for the
  Distribution of Electrical Energy

# PART 2 - PRODUCTS

## 2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA WC-70 and as specified herein.
- B. Single Conductor:
  - 1. Shall be aluminum, unless otherwise noted.
  - 2. Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No. 10 AWG and smaller.
  - 3. Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein.

#### C. Insulation:

- XHHW-2 or THHN-THWN shall be in accordance with NEMA WC-70, UL 44, and UL 83.
- 2. Direct burial: UF or USE shall be in accordance with NEMA WC-70 and UL 493.
- D. Color Code:

 Secondary service feeder and branch circuit conductors shall be color-coded as follows:

| 208/120 volt                                       | Phase   | 480/277 volt |  |
|----------------------------------------------------|---------|--------------|--|
| Black                                              | A       | Brown        |  |
| Red                                                | В       | Orange       |  |
| Blue                                               | C       | Yellow       |  |
| White                                              | Neutral | Gray *       |  |
| * or white with colored (other than green) tracer. |         |              |  |

- a. Lighting circuit "switch legs" and 3-way switch "traveling wires" shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident Engineer.
- Use solid color insulation or solid color coating for No. 12 AWG and No. 10 AWG branch circuit phase, neutral, and ground conductors.
- 3. Conductors No. 8 AWG and larger shall be color-coded using one of the following methods:
  - a. Solid color insulation or solid color coating.
  - b. Stripes, bands, or hash marks of color specified above.
  - c. Color as specified using 0.75 in [19 mm] wide tape. Apply tape in half-overlapping turns for a minimum of 3 in [75 mm] for terminal points, and in junction boxes, pull-boxes, troughs, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

## 2.2 SPLICES AND JOINTS

- A. In accordance with UL 486A, C, D, E, and NEC.
- B. Aboveground Circuits (No. 10 AWG and smaller):
  - 1. Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F [105° C], with integral insulation, approved for copper and aluminum conductors.
  - 2. The integral insulator shall have a skirt to completely cover the stripped wires.
  - 3. The number, size, and combination of conductors, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Aboveground Circuits (No. 8 AWG and larger):
  - Connectors shall be indent, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
  - 2. Field-installed compression connectors for cable sizes 250 kcmil and larger shall have not fewer than two clamping elements or compression indents per wire.

- 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Splice and joint insulation level shall be not less than the insulation level of the conductors being joined.
- 4. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

## D. Underground Branch Circuits and Feeders:

1. Submersible connectors in accordance with UL 486D, rated 600 V, 190° F [90° C], with integral insulation.

## 2.3 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified for power and lighting wiring, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

## 2.4 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

## PART 3 - EXECUTION

## 3.1 GENERAL

- A. Install in accordance with the NEC, and as specified.
- B. Install all medium-voltage cable in raceways; low-voltage cable shall be direct buried except where stubbed into transformers, junction boxes, buildings, and other similar installations, which shall be in conduit.
- C. Splice cables and wires only in outlet boxes, junction boxes, pull-boxes, manholes, or handholes.
- D. Wires of different systems (e.g., 120 V, 277 V) shall not be installed in the same conduit or junction box system.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. For panel boards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits.
- G. Seal cable and wire entering a building from underground between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.

## H. Wire Pulling:

- 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. Use lubricants approved for the cable.
- 2. Use nonmetallic ropes for pulling feeders.
- 3. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer.
- 4. All cables in a single conduit shall be pulled simultaneously.
- 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- No more than three single-phase branch circuits shall be installed in any one conduit.

#### 3.2 INSTALLATION IN MANHOLES

A. Install and support cables in manholes on the steel racks with porcelain or equivalent insulators. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

## 3.3 SPLICE INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure.
- B. Tighten electrical connectors and terminals according to manufacturer's published torque values.
- C. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

## 3.4 FEEDER IDENTIFICATION

- A. In each interior pull-box and junction box, install metal tags on all circuit cables and wires to clearly designate their circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties.
- B. In each manhole and handhole, provide tags of the embossed brass type, showing the circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties.

## 3.5 EXISTING WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for a new installation.

## 3.6 DIRECT BURIAL CABLE INSTALLATION

- A. Tops of the cables:
  - 1. Below the finished grade: Minimum 24 in [600 mm] unless greater depth is shown.
  - 2. Below road and other pavement surfaces: In conduit as specified, minimum 30 in [750 mm] unless greater depth is shown.
  - 3. Do not install cables under railroad tracks.
- B. Work with extreme care near existing ducts, conduits, cables, and other utilities to prevent any damage.
- C. Cut the trenches neatly and uniformly:
  - Excavating and backfilling is specified in Section 31 20 00, EARTH MOVING.
  - 2. Place a 3 in [75 mm] layer of sand in the trenches before installing the cables.
  - 3. Place a 3 in [75 mm] layer of sand over the installed cables.
  - 4. Install continuous horizontal, 1 in x 8 in [25 mm x 200 mm] preservative impregnated wood planking 3 in [75 mm] above the cables before backfilling.
- D. Provide horizontal slack in the cables for contraction during cold weather.
- E. Install the cables in continuous lengths. Splices within cable runs shall not be accepted.
- F. Connections and terminations shall be listed submersible-type designed for the cables being installed.
- G. Warning tape shall be continuously placed 12 in [300 mm] above the buried cables.

## 3.7 ACCEPTANCE CHECKS AND TESTS

- A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices, such as fixtures, motors, or appliances. Test each conductor with respect to adjacent conductors and to ground. Existing conductors to be reused shall also be tested.
- B. Applied voltage shall be 500VDC for 300-volt rated cable, and 1000VDC for 600-volt rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300-volt rated cable and 100 megohms for 600-volt rated cable.
- C. Perform phase rotation test on all three-phase circuits.
- D. The contractor shall furnish the instruments, materials, and labor for all tests.

- - - E N D - - -

THIS PAGE LEFT INTENTIONALLY BLANK

# SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

- A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 13 00, MEDIUM-VOLTAGE CAPACITOR BANK: Medium voltage distribution switchgear.
- C. Section 26 13 13 MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR.
- D. Section 26 18 41, MEDIUM-VOLTAGE SWITCHES: Medium voltage switches.

## 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
  - 1. Clearly present enough information to determine compliance with drawings and specifications.
  - 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
  - 1. Certification that the materials and installation are in accordance with the drawings and specifications.

2. Certification by the contractor that the complete installation has been properly installed and tested.

## 1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

- A. American Society for Testing and Materials (ASTM):
  - B1-07......Standard Specification for Hard-Drawn Copper

Wire

B3-07.....Standard Specification for Soft or Annealed

Copper Wire

B8-04......Standard Specification for Concentric-Lay-

Stranded Copper Conductors, Hard, Medium-Hard,

or Soft

- B. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
  - 81-1983..... EEEE Guide for Measuring Earth Resistivity,

Ground Impedance, and Earth Surface Potentials

of a Ground System

- C2-07......National Electrical Safety Code
- C. National Fire Protection Association (NFPA):
  - 70-08......National Electrical Code (NEC)
  - 99-2005......Health Care Facilities
- D. Underwriters Laboratories, Inc. (UL):

  - 467-07 ......Grounding and Bonding Equipment
  - 486A-486B-03 ......Wire Connectors

# PART 2 - PRODUCTS

### 2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 mm²] and larger shall be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG  $[6\ mm^2]$  and smaller shall be ASTM B1 solid bare copper wire.

C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.

## 2.2 GROUND RODS

- A. Steel or copper clad steel, 0.75 in [19 mm] diameter by 10 ft [30 M] long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance, as shown on the drawings.

### 2.3 MEDIUM VOLTAGE TERMINATIONS

A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

### 2.4 GROUND CONNECTIONS

- A. Below Grade: Exothermic-welded type connectors.
- B. Above Grade:
  - 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
  - 2. Connection to Building Steel: Exothermic-welded type connectors.
  - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
  - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.

## 2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 0.375 in [4 mm] thick x 0.75 in [19 mm] wide.

## 2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

## 2.7 GROUNDING BUS

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 0.25 in [6.3 mm] thick x 4 in [100 mm] high in cross-section, length as shown on drawings, with 0.281 in [7.1 mm] holes spaced 1.125 in [28 mm] apart.

# PART 3 - EXECUTION

### 3.1 GENERAL

A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.

# B. System Grounding:

- 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
- 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. Special Grounding: For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

### 3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible (except connections for which access for periodic testing is required), by exothermic weld.

### 3.3 MEDIUM VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Pad-Mounted Transformers:
  - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
  - 2. Ground the secondary neutral.
- C. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium voltage conductors, sized per NEC except that minimum size shall be 2 AWG [25 mm²]. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole hardware and ground rods, to the cable shielding grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.

## 3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):
  - 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building steel, and supplemental or made electrodes. Provide jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.

- 2. Provide a supplemental ground electrode and bond to the grounding electrode system.
- C. Service Disconnect (Separate Individual Enclosure): Provide a ground bar bolted to the enclosure with lugs for connecting the various grounding conductors.
- D. Switchboards, Unit Substations, Panelboards, Motor Control Centers and Panelboards, and Automatic Transfer Switches:
  - 1. Connect the various feeder equipment grounding conductors to the ground bus in the enclosure with suitable pressure connectors.
  - 2. For service entrance equipment, connect the grounding electrode conductor to the ground bus.
  - 3. Provide ground bars, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
  - 4. Connect metallic conduits that terminate without mechanical connection to the housing, by grounding bushings and grounding conductor to the equipment ground bus.

### E. Transformers:

- Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary.
   Provide a grounding electrode at the transformer.
- 2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

# 3.5 RACEWAY

## A. Conduit Systems:

- 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
- 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.

- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
  - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
  - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

## D. Wireway Systems:

- 1. Bond the metallic structures of wireway to provide 100% electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 50 ft [16 M].
- 3. Use insulated No. 6 AWG [16 mm<sup>2</sup>] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG [16 mm<sup>2</sup>] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M].
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.

G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

## 3.6 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

### 3.7 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

# 3.8 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

### 3.9 ELECTRICAL ROOM GROUNDING

A. Building Earth Ground Busbars: Provide ground busbar and mounting hardware at each electrical room and connect to pigtail extensions of the building grounding ring.

### 3.10 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the Resident Engineer prior to backfilling. The contractor shall notify the Resident Engineer 24 hours before the connections are ready for inspection.

# 3.11 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 24 in [609 mm] below final grade.
- B. For indoor installations, leave 4 in [100 mm] of rod exposed.
- C. Where permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressure-type ground connectors.
- D. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

- - - E N D - - -

# SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path
  for possible ground fault currents.
- C. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- D. Section 31 20 00, EARTH MOVING: Bedding of conduits.

### 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
  - Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.

# B. Shop Drawings:

- 1. Size and location of main feeders.
- 2. Size and location of sectionalizing switches and pull-boxes.
- 3. Layout of required conduit penetrations through structural elements.

## C. Certifications:

- 1. Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
  - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
  - b. Certification by the contractor that the material has been properly installed.

### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):

| C80.1-05 | .Electric | al Rigid | Steel | Conduit |
|----------|-----------|----------|-------|---------|
| C80.3-05 | .Steel El | ectrical | Metal | Tubing  |

- C80.6-05.....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA):
  - 70-08......National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

| 1-05Flexible N | Metal | Conduit |
|----------------|-------|---------|
|----------------|-------|---------|

- 5-04......Surface Metal Raceway and Fittings
- 6-07......Electrical Rigid Metal Conduit Steel
- 50-95......Enclosures for Electrical Equipment
- 360-093.....Liquid-Tight Flexible Steel Conduit
- 467-07.....Grounding and Bonding Equipment
- 514A-04.....Metallic Outlet Boxes
- 514B-04......Conduit, Tubing, and Cable Fittings
- 514C-96......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
- 651-05.....Schedule 40 and 80 Rigid PVC Conduit and
- Fittings
- 651A-00.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing
- 1242-06.................Electrical Intermediate Metal Conduit Steel
- E. National Electrical Manufacturers Association (NEMA):
  - TC-2-03......Electrical Polyvinyl Chloride (PVC) Tubing and Conduit

  - FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

# PART 2 - PRODUCTS

# 2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.

## B. Conduit:

- 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
- 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
- 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
- 4. Flexible galvanized steel conduit: Shall conform to UL 1.
- 5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
- 6. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 7. Surface metal raceway: Shall conform to UL 5.

# C. Conduit Fittings:

- 1. Rigid steel and IMC conduit fittings:
  - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
  - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
  - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
  - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
  - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
  - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical metallic tubing fittings:
  - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
  - b. Only steel or malleable iron materials are acceptable.
  - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats.

- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible steel conduit fittings:
  - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
  - b. Clamp-type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
  - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
  - b. Only steel or malleable iron materials are acceptable.
  - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct burial plastic conduit fittings:
  - a. Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and deflection couplings:
  - a. Conform to UL 467 and UL 514B.
  - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
  - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
  - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

## D. Conduit Supports:

- 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.

- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
  - 1. UL-50 and UL-514A.
  - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
  - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

### PART 3 - EXECUTION

### 3.1 PENETRATIONS

- A. Cutting or Holes:
  - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements.
  - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the Resident Engineer as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

# 3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
  - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
  - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.

- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
- 7. Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

### D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

### 3.3 CONCEALED WORK INSTALLATION

# A. In Concrete:

- 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
  - a. Where shown on the structural drawings.
  - b. As approved by the Resident Engineer prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.

- a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
- b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
- c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.

### 3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:
  - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
  - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

# 3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

# 3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only, notwithstanding requirements otherwise specified in this or other sections of these specifications.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

### 3.7 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

# 3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

## 3.9 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.
- C. Install expansion and deflection couplings where shown.

### 3.10 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.

- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
  - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
  - 2. Existing Construction:
    - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
    - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
    - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

## 3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
  - 1. Flush-mounted.
  - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.

- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- F. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

# SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

### PART 1 - GENERAL

### 1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of precast manholes and pullboxes with ducts to form a complete underground raceway system.
- B. "Duct" and "conduit," and "rigid metal conduit" and "rigid steel conduit" are used interchangeably in this specification.

### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings and boxes for raceway systems.

# 1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, pullboxes, and pull-boxes with final arrangement of other utilities, site grading, and surface features, as determined in the field.

### 1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
  - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
  - 2. Include manholes, pullboxes, duct materials, and hardware. Submit plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories and details.

- 3. Proposed deviations from details on the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes or pullboxes at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit four copies to the Resident Engineer for approval prior to construction.
- C. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
  - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
  - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

# 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318/318M-05......Building Code Requirements for Structural Concrete & Commentary SP-66-04.....ACI Detailing Manual C. American National Standards Institute (ANSI): 77-07......Underground Enclosure Integrity D. American Society for Testing and Materials (ASTM): C478-09.....Standard Specification for Precast Reinforced Concrete Manhole Sections C858-09......Underground Precast Concrete Utility Structures C990-09......Standard Specification for Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants. E. Institute of Electrical and Electronic Engineers (IEEE): C2-07 ......National Electrical Safety Code F. National Electrical Manufacturers Association (NEMA): TC 2-03..... Electrical Polyvinyl Chloride (PVC) Tubing And Conduit TC 3-2004.....PVC Fittings for Use With Rigid PVC Conduit And

Tubing

|    | TC 6 & 8 2003PVC Plastic Utilities Duct For Underground       |
|----|---------------------------------------------------------------|
|    | Installations                                                 |
|    | TC 9-2004Fittings For PVC Plastic Utilities Duct For          |
|    | Underground Installation                                      |
| G. | National Fire Protection Association (NFPA):                  |
|    | 70-08National Electrical Code (NEC)                           |
| Н. | Underwriters Laboratories, Inc. (UL):                         |
|    | 6-07Electrical Rigid Metal Conduit-Steel                      |
|    | 467-07Grounding and Bonding Equipment                         |
|    | 651-05Schedule 40 and 80 Rigid PVC Conduit and                |
|    | Fittings                                                      |
|    | 651A-00Type EB and A Rigid PVC Conduit and HDPE               |
|    | Conduit                                                       |
|    | 651B-07Continuous Length HDPE Conduit                         |
| I. | U.S. General Services Administration (GSA):                   |
|    | A-A-60005-1998Frames, Covers, Gratings, Steps, Sump and Catch |

# 1.6 STORAGE

A. Lift and support pre-cast concrete structures only at designated lifting or supporting points.

Basin, Manhole

# PART 2 - PRODUCTS

# 2.1 DUCTS

- A. Number and sizes shall be as shown on drawings.
- B. Ducts (concrete-encased):
  - 1. Plastic Duct:
    - a. NEMA TC6 & 8 and TC9 plastic utilities duct.
    - b. Duct shall be suitable for use with 194° F [90° C] rated conductors.
  - 2. Conduit Spacers: Prefabricated plastic.

# 2.2 GROUNDING

- A. Rods: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. Ground Wire: Stranded bare copper 6 AWG [16 mm²] minimum.

# 2.3 WARNING TAPE

A. Standard 4-mil polyethylene 3 in [76 mm] wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

### 2.4 PULL ROPE FOR SPARE DUCTS

A. Plastic with 200 lb [890 N] minimum tensile strength.

### PART 3 - EXECUTION

#### 3.1 TRENCHING

- A. Refer to Section 31 20 00, EARTH MOVING for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, the Ground Penetrating Radar Survey shall be carefully performed by certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, cables, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
  - 1. After excavation of the trench, stakes shall be driven in the bottom of the trench at 4 ft  $[1.2 \, \text{M}]$  intervals to establish the grade and route of the duct bank.
  - 2. Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
  - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
  - 4. After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place. Conduits shall be heavy wall rigid steel.

## 3.2 DUCT INSTALLATION

- A. General Requirements:
  - 1. Ducts shall be in accordance with the NEC and IEEE C2, as shown on the drawings, and as specified.
  - 2. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 4 in [100 mm] in 100 ft [30 M].

- 3. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be taped galvanized rigid steel, and shall extend a minimum of 5 ft [1.5 M] outside the building foundation. Tops of conduits below building slab shall be minimum 24 in [610 mm] below bottom of slab.
- 4. Stub-ups, sweeps, and risers to equipment mounted on outdoor concrete slabs shall be taped galvanized rigid steel, and shall extend a minimum of 5 ft [1.5 M] away from the edge of slab.
- 5. Install insulated grounding bushings on the terminations.
- 6. Radius for turns of direction shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter. Use manufactured long sweep bends.
- 7. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 3 in [75 mm] above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 5 ft [1.5 M]. Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during pouring of concrete. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 12 in [300 mm] from other utility systems, such as water, sewer, and chilled water.
- 10. Clearances between individual ducts:
  - a. For like services, not less than 3 in [75 mm].
  - b. For power and signal services, not less than 6 in [150 mm].
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Seal conduits, including spare conduits, at building entrances and at outdoor equipment terminations with a suitable compound to prevent entrance of moisture and gases.

- B. Concrete-Encased Ducts and Conduits:
  - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
  - 2. Duct lines shall consist of single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
  - 3. Tops of concrete-encased ducts shall be:
    - a. Not less than 24 in [600 mm] and not less than shown on the drawings, below finished grade.
    - b. Not less than 30 in [750 mm] and not less than shown on the drawings, below roads and other paved surfaces.
    - c. Conduits crossing under grade slab construction joints shall be installed a minimum of 4 ft [1.2 M] below slab.
  - 4. Extend the concrete envelope encasing the ducts not less than 3 in [75 mm] beyond the outside walls of the outer ducts and conduits.
  - 5. Within 10 ft [3 M] of building manhole and pullbox wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
  - 6. Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
  - 7. Where new ducts, conduits, and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, conduits, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
  - 8. Conduit joints in concrete may be placed side by side horizontally, but shall be staggered at least 6 in [150 mm] vertically.
  - 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 0.75 in [19 mm] reinforcing rod dowels extending 18 in [450 mm] into concrete on both sides of joint near corners of envelope.
  - 10. Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Resident Engineer.

# 11. Duct Bank Markers:

- a. Duct bank markers, where required and shown on plans, shall be located at the ends of duct banks except at manholes or pullboxes at approximately every 200 ft [60 M] along the duct run and at each change in direction of the duct run. Markers shall be placed 2 ft [0.6 M] to the right of the duct bank, facing the longitudinal axis of the run in the direction of the electrical load.
- b. The letter "D" with two arrows shall be impressed or cast on top of the marker. One arrow shall be located below the letter and shall point toward the ducts. The second arrow shall be located adjacent to the letter and shall point in a direction parallel to the ducts. The letter and arrow adjacent to it shall each be approximately 2 in [75 mm] long. The letter and arrows shall be V-shaped, and shall have a width of stroke at least 0.75 in [6 mm] at the top and a depth of 0.25 in [6 mm].
- c. In paved areas, the top of the duct markers shall be flush with the finished surface of the paving.
- d. Where the duct bank changes direction, the arrow located adjacent to the letter shall be cast or impressed with an angle in the arrow equivalent to the angular change of the duct bank.
- C. Concrete-Encased Duct and Conduit Identification: Place continuous strip of warning tape approximately 12 in [300 mm] above ducts or conduits before backfilling trenches. Warning tape shall be preprinted with proper identification.
- D. Spare Ducts and Conduits: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- E. Duct and Conduit Cleaning:
  - 1. Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct. The mandrel shall be not less than 12 in [3600 mm] long, and shall have a diameter not less than 0.5 in [13 mm] less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
  - 2. Mandrel pulls shall be witnessed by the Resident Engineer.

- G. Duct and Conduit Sealing: Seal the ducts and conduits at building entrances, and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of moisture and gases.
- H. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- I. Connections to Existing Ducts: Where connections to existing duct banks are indicated, excavate around the duct banks as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- J. Partially-Completed Duct Banks: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable conduit plugs. Fit concrete envelope of a partially completed duct bank with reinforcing steel extending a minimum of 2 ft [0.6 M] back into the envelope and a minimum of 2 ft [0.6 M] beyond the end of the envelope. Provide one No. 4 bar in each corner, 3 in [75 mm] from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 12 in [300 mm] apart. Restrain reinforcing assembly from moving during pouring of concrete.

- - - E N D - - -

# SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

## PART 1 - GENERAL

### 1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, indicated as the study in this section.
- B. A short-circuit and selective coordination study shall be prepared for all of the electrical overcurrent devices connected to the entire Feeder #3. The fusing at the transformer / SNC switch needs to be included. The feeder into the facilities and service gear does not need to be included. Collect equipment information on site as needed.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device.
- D. The relay settings of the main breaker shall be reviewed with the electric utility company to assure coordination with the electric utility company primary fusing. Prior to switchgear activation, provide written verification of this review to the Resident Engineer.

### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Medium-voltage circuit breaker switchgear.

## 1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer.

# 1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
  - 1. Product data on the software program to be used for the study.

    Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
  - 2. Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.

- 3. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE):

| 242-01 | .Protection | and  | Coordination | of | Industrial | and |
|--------|-------------|------|--------------|----|------------|-----|
|        | Commercial  | Powe | er Systems   |    |            |     |

| 399-97 | .Industrial | and | Commercial | Power | Systems |
|--------|-------------|-----|------------|-------|---------|
|        | Analysis    |     |            |       |         |

1584a-04......Guide for Performing Arc-Flash Hazard
Calculations

## 1.6 STUDY REQUIREMENTS

- A. The study shall include one line diagram, short-circuit and ground fault analysis, and protective coordination plots for all overcurrent protective devices.
- B. One Line Diagram:
  - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
  - 2. Show the following specific information:
    - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
    - b. Relay, circuit breaker, and fuse ratings.
    - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
    - d. Voltage at each bus.
    - e. Identification of each bus, matching the identification on the drawings.
    - f. Conduit, conductor, and busway material, size, length, and  $\ensuremath{\text{X/R}}$  ratios.

# C. Short-Circuit Study:

1. The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in

- developing the calculations shall be described in the introductory remarks of the study.
- 2. Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
- 3. Present the results of the short-circuit study in a table. Include the following:
  - a. Device identification.
  - b. Operating voltage.
  - c. Overcurrent protective device type and rating.
  - d. Calculated short-circuit current.

## D. Coordination Curves:

- 1. Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
- 2. The following specific information shall also be shown on the coordination curves:
  - a. Device identification.
  - b. Potential transformer and current transformer ratios.
  - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
  - d. Applicable circuit breaker or protective relay characteristic curves.
  - e. No-damage, melting, and clearing curves for fuses.
  - f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
  - a. Device identification.
  - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
  - c. Fuse rating and type.

# 1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

# 1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

# SECTION 26 12 19 PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

## PART 1 - GENERAL

### 1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of pad-mounted transformers and meters.
- B. Pad-mounted transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and weatherproof, with liquid-immersed transformers.
- C. Provide one spare 50KVA (12470-120/240V, 1-phase, 3-wire), one spare 100KVA (12470-120/240V, 1-phase, 3-wire), and one spare 225 KVA transformers (12470-208Y/120V, 3-phase, 4-wire). Hand over to Owner and locate in storage where directed by Owner. Leave packaging on transformers for protection.

### 1.2 RELATED WORK

- A. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for electrical equipment.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- C. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path to
  ground for possible ground currents.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and duct lines for underground raceway systems.

# 1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

# 1.4 FACTORY TESTS

- A. Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per UL and ANSI Standards. Factory tests shall be certified. The following tests shall be performed:
  - 1. Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
  - 2. Perform turns-ratio tests at all tap positions.

### 1.5 SUBMITTALS

A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

## B. Shop Drawings:

- 1. Clearly present sufficient information to determine compliance with drawings and specifications.
- 2. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
- 3. Complete nameplate data, including manufacturer's name and catalog number.

### C. Manuals:

- When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
  - a. Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
  - b. Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
  - c. Approvals will be based on complete submissions of manuals, together with shop drawings.
- Two weeks prior to the final inspection, submit four copies of the final up-dated maintenance and operation manuals to the Resident Engineer.
  - a. Update the manual to include any information necessitated by shop drawing approval.
  - b. Show all terminal identification.
  - c. Include information for testing, repair, trouble-shooting, assembly, disassembly, and recommended maintenance intervals.
  - d. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
  - e. Furnish manuals in loose-leaf binder or manufacturer's standard binder.

# D. Certifications:

Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:

- 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
- 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

### 1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

  B. American Concrete Institute (ACI):
  - 318-05......Building Code Requirements for Structural
    Concrete
- - Voltage Connectors; High Voltage, 34500 Grd
    Y/19920 Volts and Below; Low-Voltage 240/120
    Volts; 167 kVA and Smaller Requirements
    C57.12.28-05...........Pad-Mounted Equipment Enclosure Integrity
  - C57.12.29-99...........Pad-Mounted Equipment Enclosure Integrity for Coastal Environments
  - C57.12.34-04...........Pad-Mounted, Compartmental-Type, Self Cooled,

    Three-Phase Distribution Transformers, 2500kVA

    and Smaller High Voltage 34500 Grd Y/19920

    Volts and Below; Low-Voltage 480 Volts and Below
- D. American Society for Testing and Materials (ASTM):
  - D3487-08.....Standard Specification for Mineral Insulating
    Oil Used in Electrical Apparatus
- E. Institute of Electrical and Electronic Engineers (IEEE):
  - C2-07.....National Electrical Safety Code
  - C62.11-99..... Metal-Oxide Surge Arresters for Alternating
    Current Power Circuits
  - 48-09..... Test Procedures and Requirements for Alternating

    Current Cable Terminations Used on Shielded

    Cables Having Laminated Insulation Rated 2.5kV

    Through 765kV or Extruded Insulation Rated 2.5kV

Through 500kV

386-06......Standard for Separable Insulated Connector
Systems for Power Distribution Systems Above
600V

|    | 592-96Standard for Exposed Semiconducting Shields on      |
|----|-----------------------------------------------------------|
|    | High Voltage Cable Joints and Separable                   |
|    | Insulated Connectors                                      |
| F. | National Electrical Manufacturers Association (NEMA):     |
|    | C57.12.26-87Pad-Mounted, Compartmental-Type, Self-Cooled, |
|    | Three-Phase Distribution Transformers for Use             |
|    | with Separable Insulated High-Voltage                     |
|    | Connectors, High-Voltage, 34500 Grd Y/19920               |
|    | Volts and Below; 2500 kVA and Smaller                     |
|    | LA1-92Surge Arresters                                     |
|    | TP1-02 Guide for Determining Energy Efficiency for        |
|    | Distribution Transformers                                 |
|    | TR1-00 Transformers, Regulators, and Reactors             |
| G. | National Fire Protection Association (NFPA):              |
|    | 70-08National Electrical Code (NEC)                       |
| н. | Underwriters Laboratories Inc. (UL):                      |

### PART 2 - PRODUCTS

# 2.1 EQUIPMENT, GENERAL

- A. Equipment shall be in accordance with ANSI, ASTM, IEEE, NEMA, NFPA, UL, as shown on the drawings, and as specified herein. The transformer shall be assembled as an integral unit by a single manufacturer.
- B. Ratings shall not be less than shown on the drawings.

467-07.....Grounding and Bonding Equipment

- C. Provide transformers designed to withstand the mechanical stresses caused by rough handling during shipment in addition to the electrical and mechanical stresses that may occur during operation.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the job site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat, except where a different color is specified in Section 09 06 00, SCHEDULE FOR FINISHES. All surfaces of the unit that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

# 2.2 COMPARTMENTS

- A. Construction:
  - 1. Enclosures shall be in accordance with ANSI C57.12.28.
  - The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.

- 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing, reinforcing gussets, and jig-welding to ensure rectangular rigidity.
- 4. Use cadmium or zinc plated bolts, nuts, and washers.
- 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
- 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.

### B. Doors:

- 1. Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
- 2. The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

### 2.3 BIL RATING

A. 15 kV class equipment shall have a minimum 95 kV BIL rating.

# 2.4 TRANSFORMER FUSE ASSEMBLY

- A. The primary fuse assembly shall be load-break combination fuse and dry-well fuse holder rated for system voltage, rated for 10 load makes and 10 load breaks, with rated 200 amp load current at 75% power factor, 10,000 symmetrical A close-in on fault duty, and 95 kV BIL. The entire fuse assembly shall be removable through the use of hot stick.
  - 1. The fuses shall be concealed, hot stick removable, 50,000 A symmetrical interrupting, non-expulsion, current-limiting primary distribution type, of the size and voltage class as shown on the drawings. The fuses shall operate within the fuse holder as a unit disconnecting means. Fuses shall be in accordance with ANSI C37.47.
  - 2. Transformers shall not have internal "weak link" fuses that require transformer tank cover removal for replacement.
  - 3. For units above 500 kVA using fusing above the 50 A 15 kV and 100 A 5 kV application, a clip-mounted arrangement of the current limiting fuses (i.e., live-front configuration) is required.

## 2.5 PRIMARY CONNECTIONS

A. Primary connections shall be 200 A dead-front load break wells and inserts for cable sizes shown on the drawings.

B. Surge Arresters: Distribution class, one for each primary phase, complying with IEEE C62.11 and NEMA LA 1, supported from tank wall.

### 2.6 MEDIUM-VOLTAGE SWITCH

- A. The transformer primary disconnect switch for radial feeds shall be an oil-immersed, internal, gang-operated, load-interrupter type, rated 200 A, with a close-in on fault duty of 5,000 A symmetrical at voltage as shown on the drawings. The switch is to be a two-position, on-off, manual switch located in the medium-voltage compartment and hot-stick-operated.
  - 1. Continuous current 200 A. A built-in switch with momentary current 10,000 A symmetrical (2 seconds). Make and latch 6,000 A symmetrical.
- B. Where an loop-feed operation switch is shown on the drawings, provide a four-position configuration arrangement (Feeder I, Feeder II, loop, or OFF), oil-immersed, gang-operated, rotary, loadbreak switch. The switch mechanism shall be spring-loaded and the operation shall be independent of operator speed. The switch shall have the following ratings:
  - Continuous current 600 A. A built-in switch with maximum phase-tophase voltage 35 kV, maximum phase-to-ground voltage 21.1 kV.
     Momentary 10,000 A for 10 cycles symmetrical.
- C. Provide LIS (Load Break Switch)internal to transformer, (GE Breakmaster LIS - 600A Frame, 25kA interrupting rating and GE 9F60 EJO-1, 15.5kV E-Rated, xxA Trip/Frame (Amperage as indicated on riser diagram), 50kA interrupting rating) or equivalent.

## 2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium voltage cables in the primary compartment with loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a minimum of 0.125 in [3 mm] semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Loadbreak elbow and bushing insert shall be from the same manufacturer. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands. Elbow connectors shall be rated as follows:
  - 1. Voltage: 15Kv phase-to-phase.
  - 2. Continuous current: 200 A RMS.
- B. Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.

C. Provide insulated cable supports to relieve any strain imposed by cable weight or movement.

## 2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the low voltage bushings and hot stick in the low voltage compartment.
- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement per ANSI.
- C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the neutral and ground pad.

## 2.9 TRANSFORMERS

- A. Transformers shall be three-phase, liquid-immersed, isolated winding, and self-cooled by natural convection.
- B. The kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- C. Temperature rises shall not exceed the NEMA TR1 standards of 149° F [65°C] by resistance, and 180° F [80° C] hotspot at rated kVA.
- D. Transformer insulating material shall be mineral oil and shall be in accordance with ASTM D 3487.
- E. Transformer impedance shall be not less than 4.5% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
- F. Sound levels shall conform to NEMA TR1 standards.
- G. Primary and Secondary Windings for Three-Phase Transformers:
  - Primary windings shall be delta-connected, unless noted otherwise on the drawings. Provide isolated neutral bushings for primary wyeconnected transformers.
  - Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.
  - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- H. Primary windings shall have four 2.55 full-capacity voltage taps; two taps above and two taps below rated voltage.
- I. Core and Coil Assemblies:
  - Cores shall be grain-oriented, non-aging, and silicon steel to minimize losses.
  - Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
  - 3. Coils shall be continuous-winding type without splices except for taps. Material shall be copper.

- 4. Coil and core losses shall be optimum for efficient operation.
- 5. Primary, secondary, and tap connections shall be brazed or pressure type.
- 6. Provide end fillers or tiedowns for coil windings.
- J. The transformer tank, cover, and radiator gauge thickness shall not be less than that outlined in ANSI.

## K. Accessories:

- 1. Provide standard NEMA features, accessories, and the following:
  - a. No-load tap changer (Provide warning sign).
  - b. Lifting, pulling, and jacking facilities.
  - c. Globe-type valve for oil filtering and draining, including sampling device.
  - d. Pressure relief valve.
  - e. Liquid level gauge and filling plug.
  - f. A grounding pad in the medium- and low-voltage compartments.
  - g. A diagrammatic nameplate and operating instructions enclosed by a transparent cover located in the low-voltage compartment.
  - h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.
  - i. Hot stick. Securely fasten hot stick within low-voltage compartment.
- 2. The accessories shall be made accessible within the compartments without disassembling trims and covers.
- L. Transformers shall meet the minimum energy efficiency values per NEMA TP1:

| KVA   | (%)  |  |  |  |
|-------|------|--|--|--|
| 75    | 98.1 |  |  |  |
| 112.5 | 98.3 |  |  |  |
| 150   | 99.0 |  |  |  |
| 225   | 99.0 |  |  |  |
| 300   | 99.0 |  |  |  |
| 500   | 99.1 |  |  |  |
| 750   | 99.2 |  |  |  |
| 1000  | 99.2 |  |  |  |
| 1500  | 99.3 |  |  |  |
| 2000  | 99.4 |  |  |  |
| 2500  | 99.4 |  |  |  |

## 2.10 METERS

- A. Manufacturers:
  - 1. E-MON L.P.
  - 2. Electro Industries/Gauge Tech.
  - 3. National Meter Industries, Inc.
  - 4. Osaki Meter Sales, Inc.
  - 5. Power Measurement.
  - 6. Square D; Schneider Electric.
- B. Kilowatt-Hour/Demand Meter: Electronic single- and three-phase meters, measuring electricity use and demand.
  - Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
  - 2. Display: Digital liquid crystal, indicating accumulative kilowatt hours, current time and date, current demand, historic peak demand, and time and date of historic peak demand.
  - 3. Demand Signal Communication Interface: Match signal to input and arrange to convey the instantaneous, integrated, demand level measured by meter to provide data for processing and possible programmed demand control action by destination system.
  - 4. Programmable Contact Module: Unit shall have push-button switches and a display for setting the demand level at which an integral set of Form C contacts shall be operated to initiate indicated action.
  - 5. Enclosure: NEMA 250, Type 3R minimum, with hasp for padlocking or sealing.
  - 6. Identification: Comply with Division 26 Section "Identification for Electrical Systems."
  - 7. Memory Backup: Self-contained to maintain memory throughout power outages of 72 hours, minimum.
  - 8. Sensors: Current-sensing type, with current or voltage output, selected for optimum range and accuracy for ratings of circuits indicated for this application.
    - a. Type: Split and solid core.
  - 9. Meter Accuracy: Nationally recognized testing laboratory certified to comply with ANSI C12.1. True RMS meter.
  - 10. Meter shall have peak logging for annual demand.
- C. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:
  - 1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y, if required.
  - Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
  - 3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.
  - 4. Current Transformers for Neutral and Ground-Fault Current Sensing:
    Connect secondaries to ground overcurrent relays to provide
    selective tripping of main and tie circuit breaker. Coordinate
    with feeder circuit-breaker ground-fault protection.
- D. Settings:
  - 1. All instrument meter cans shall have both voltage and current bypass switches installed and wired correctly to the new CTs. All new meters shall be preprogrammed for first screen to be test (pixels all light up), second screen to be KWH, third screen to be KW demand (externally resettable), and fourth (final screen) to be number of resets. That is all to be displayed, with each duration set to 3 seconds.

#### PART 3 - EXECUTION

## 3.1 INSTALLATION

A. Install transformers as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.

#### B. Foundation:

- 1. Provide foundation of reinforced concrete, Type C, 21mPa (3000 psi minimum, 28 day compressive strength), complying with the ACI 318.
- 2. Locate the top of foundation pads 6 in [150 mm] above the adjacent finished grade, unless otherwise shown on the drawings. Refer to drawings for size, location, and structural steel reinforcing required.
- 3. Grade the adjacent terrain so that surface water will flow away from the foundation.
- 4. Anchor transformers with cadmium- or zinc-plated bolts, nuts, and washers. Bolts shall not be less than 0.5 in [12 mm] diameter.

#### C. Grounding:

- Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
- 2. Connect the ground rod to the ground pads in the medium- and low-voltage compartments, and to the secondary neutral with not less than a No. 2/0 AWG bare copper conductor.
- 3. Independently connect cable shield grounding devices ground wires to ground with sufficient slack to permit elbow connector operation. Connect elbow connectors with a No. 14 AWG bare copper drain wire from its grounding eye to the related cable shield grounding device ground wire. Do not connect drain wires in any manner that could permit circulating currents, or cable fault currents, to pass through them.

## 3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform tests in accordance with the manufacturer's recommendations.

Include the following visual and mechanical inspections.

# B. Transformers:

- 1. Compare equipment nameplate data with specifications and approved shop drawings.
- 2. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.

- 3. Verify that control and alarm settings on temperature indicators are as specified.
- 4. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, or perform thermographic survey after energization under load.
- 5. Verify correct liquid level in transformer tank.
- 6. Perform specific inspections and mechanical tests as recommended by manufacturer.
- 7. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 8. Verify the presence of transformer surge arresters, if provided.
- 9. Verify that the tap-changer is set at specified ratio.

## 3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

# 3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the Resident Engineer two weeks prior to final inspection:
  - 1. Six stand-off insulators.
  - 2. Six insulated protective caps.
  - 3. One spare set of medium-voltage fuses for each size fuse used in the project.

## 3.5 INSTRUCTIONS

A. The contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the Resident Engineer.

- - - E N D - - -

THIS PAGE LEFT INTENTIONALLY BLANK

# SECTION 26 24 16 PANELBOARDS

## PART 1 - GENERAL

## 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

## 1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Identification and painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlet boxes.

# 1.3 QUALITY ASSURANCE

A Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

# 1.4 SUBMITTALS

A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

# B. Shop Drawings:

- 1. Sufficient information, shall be clearly presented to determine compliance with drawings and specifications.
- Include electrical ratings, dimensions, mounting details, materials, wiring diagrams, accessories, and weights of equipment. Complete nameplate data, including manufacturer's name and catalog number.

## C. Manuals:

- 1. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets and wiring diagrams.
- 2. If changes have been made to the maintenance and operating manuals that were originally submitted, then submit four copies of updated maintenance and operating manuals to the Resident Engineer two weeks prior to final inspection.
- D. Certification: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
  - 1. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
  - 2. Certification by the contractor that the materials have been properly installed, connected, and tested.

## 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- C. National Fire Protection Association (NFPA):
  70-2005 ...........National Electrical Code (NEC)
  70E-2004...........Standard for Electrical Life Safety in the
  Workplace
- D. Underwriters Laboratories, Inc. (UL):
  50-95............Enclosures for Electrical Equipment
  67-09..........Panelboards
  489-09..........Molded Case Circuit Breakers and Circuit

## PART 2 - PRODUCTS

#### 2.1 PANELBOARDS

A. Panelboards shall be in accordance with UL, NEMA, NEC, and as shown on the drawings.

Breaker Enclosures

- B. Panelboards shall be standard manufactured products.
- C. All panelboards shall be hinged "door in door" type with:

- 1. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 2. Outer hinged door shall be securely mounted to the panelboard box with factory bolts, screws, clips, or other fasteners, requiring a tool for entry. Hand-operated latches are not acceptable.
- Push inner and outer doors shall open left to right.
- D. Panelboards shall have main breaker, bus size, voltage, phase, or flush /surface mounting as scheduled on the drawings.
- E. Panelboards shall conform to NEMA PB-1, NEMA AB-1, and UL 67 and have the following features:
  - 1. Non-reduced size copper bus bars with current ratings as shown on the panel schedules, rigidly supported on molded insulators.
  - 2. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
  - 3. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys of sizes suitable for the conductors to which they will be connected.
  - 4. Neutral bus shall be 100% rated, mounted on insulated supports.
  - 5. Grounding bus bar shall be equipped with screws or lugs for the connection of grounding wires.
  - 6. Buses shall be braced for the available short-circuit current. Bracing shall not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards.
  - 7. Branch circuit panelboards shall have buses fabricated for bolt-on type circuit breakers.
  - 8. Protective devices shall be designed so that they can easily be replaced.
  - 9. Where designated on panel schedule "spaces," include all necessary bussing, device support, and connections. Provide blank cover for each space.
  - 10. In two section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have cable connections to the second section. Panelboard sections with tapped bus or crossover bus are not acceptable.
  - 11. Series-rated panelboards are not permitted.

# 2.2 CABINETS AND TRIMS

## A Cabinets:

- 1. Provide galvanized steel cabinets to house panelboards. Cabinets for outdoor panelboards shall be factory primed and suitably treated with a corrosion-resisting paint finish meeting UL 50 and UL 67.
- 2. Cabinet enclosure shall not have ventilating openings.
- Cabinets for panelboards may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.

## 2.3 MOLDED CASE CIRCUIT BREAKERS FOR PANELBOARDS

- A. Circuit breakers shall be per UL 489, in accordance with the NEC, as shown on the drawings, and as specified.
- B. Circuit breakers in panelboards shall be bolt-on type.
- C. Molded case circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
  - 1. 120/208V Panelboard: 10,000 A symmetrical.
- D. Molded case circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for 100 A frame or lower. Magnetic trip shall be adjustable from 3x to 10x for breakers with 600 A frames and higher.
- E. Breaker features shall be as follows:
  - 1. A rugged, integral housing of molded insulating material.
  - 2. Silver alloy contacts.
  - 3. Arc quenchers and phase barriers for each pole.
  - 4. Quick-make, quick-break, operating mechanisms.
  - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
  - 6. Electrically and mechanically trip free.
  - An operating handle which indicates ON, TRIPPED, and OFF positions.
  - 8. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.

# PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Resident Engineer. Schedules shall be printed on the panelboard directory cards, installed in the appropriate panelboards, and incorporate all applicable contract changes. Information shall indicate outlets, lights, devices, or other equipment controlled by each circuit, and the final room numbers served by each circuit.
- D. Mount the fully-aligned panelboard such that the maximum height of the top circuit breaker above the finished floor shall not exceed 78 in [1980 mm]. Mount panelboards that are too high such that the bottom of the cabinets will not be less than 6 in [150 mm] above the finished floor.

## 3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:
  - 1. Visual and Mechanical Inspection
    - a. Compare equipment nameplate data with specifications and approved shop drawings.
    - b. Inspect physical, electrical, and mechanical condition.
    - c. Verify appropriate anchorage and required area clearances.
    - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
    - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
    - f. Clean panelboard.

## 3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

- - - E N D - - -

THIS PAGE LEFT INTENTIONALLY BLANK

# SECTION 31 20 00 EARTHWORK

## PART 1 - GENERAL

#### 1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
  - 1. Site preparation.
  - 2. Excavation.
  - 3. Filling and backfilling.
  - 4. Grading.
  - 5. Soil Disposal.
  - 6. Clean Up.
  - 7. Seeding and sodding.

#### 1.2 DEFINITIONS:

#### A. Unsuitable Materials:

- 1. Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D698.
- 2. Existing Subgrade (Except Footing Subgrade): Same materials as 1.2.A.1, that are not capable of direct support of slabs, pavement, and similar items with possible exception of improvement by compaction, proof rolling, or similar methods.
- 3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings.
- C. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.

- D. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D6938.
- E. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- F. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- G. Unauthorized excavation: Removal of materials beyond indicated sub-grade elevations or indicated lines and dimensions without written authorization by the Resident Engineer. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- H. Authorized additional excavation: Removal of additional material authorized by the Resident Engineer based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
- I. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- J. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- K. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- L. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- M. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
- N. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
- O. Contaminated soils: Soil that contains contaminates as defined and determined by the Resident Engineer or the Government's testing agency.

## 1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.

## 1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.

#### 1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
  - 1. Certification of rock quantities excavated.
  - 2. Excavation method.
  - 3. Labor.
  - 4. Equipment.
  - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
  - 6. Plot plan showing elevation.
- C. Furnish to Resident Engineer:
  - Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material.
     Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.

## 1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

| D1556-07 | Standard Test Method for Density and Unit Weight |
|----------|--------------------------------------------------|
|          | of Soil in Place by the Sand Cone Method         |
| D2167-08 | Standard Test Method for Density and Unit Weight |
|          | of Soil in Place by the Rubber Balloon Method    |
| D2487-11 | Standard Classification of Soils for Engineering |
|          | Purposes (Unified Soil Classification System)    |
|          |                                                  |

# C. Society of Automotive Engineers (SAE):

| J732-07  | .Specificat | cion Defin | itior | ns - Load | ders    |        |
|----------|-------------|------------|-------|-----------|---------|--------|
| J1179-08 | .Hydraulic  | Excavator  | and   | Backhoe   | Digging | Forces |

# 1.7 QUALITY ASSURANCE:

- A. GEOTECHNICAL TESTING AGENCY QUALIFICATIONS: QUALIFIED ACCORDING TO ASTM E 329 AND ASTM D 3740 FOR TESTING INDICATED.1.10 PROJECT CONDITIONS:
- B. Utility Locator Service: Notify "Call Before You Dig" for area where Project is located before beginning earth moving operations.

#### PART 2 - PRODUCTS

#### 2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Geotechnical Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2-inch) sieve and not more than 5 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.

## E. Granular Fill:

- 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C 33 with a maximum of 3 percent by weight passing ASTM D 1140, 75 micrometers (No. 200) sieve, and no more than 2 percent by weight passing the 4.75 mm (No. 4) size sieve.
- F. Requirements for Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method 5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site.
- G. Buried Warning and Identification Tape: acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 6 inch width and 4 mils thick, color coded as specified below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red: Electric

Yellow: Gas, Oil, Dangerous Materials

Orange: Telephone and Other Communications

Blue: Water Systems
Green: Sewer Systems
White: Steam Systems
Gray: Compressed Air

H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076

- mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m (3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.
- K. Seeding and sodding: Lawn sprinklered areas shall be reclaimed with sod. Areas without lawn sprinkler system shall be seeded. Seed mix shall be: Fast Grass Seed Mix - 30% Baron Kentucky Bluegrass (MDG), 30% Phenom Perennial Ryegrass (VDG), 20% NuBlue Plus Kentucky Bluegrass (MDG), and 20% Cindy Lou Creeping Red Fescue (VDG).

#### PART 3 - EXECUTION

## 3.1 SITE PREPARATION:

- A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by Resident Engineer. Eliminate foreign materials, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any

- circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.
- D. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
  - 1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
  - 2. Locations of existing and proposed elevations indicated on plans, except spot elevations, are approximate. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify Resident Engineer of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify Resident Engineer of any differences between existing or constructed grades, as compared to those shown on the plans.
  - 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.
- F. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

# 3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the Resident Engineer, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
  - Design of the temporary support of excavation system is the responsibility of the Contractor. The Contractor shall submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered

- professional engineer, describing the methods for shoring and sheeting of excavations. Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving.
- 2. Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the Resident Engineer.
- 3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
- 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall provide a concrete fill support under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- 5. The Contractor is required to confirm with the VA for their inspection of excavations and soil/groundwater conditions throughout construction. The VA will be performing observations throughout construction.
- B. Excavation Drainage: Operate pumping equipment , and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. C. Subgrade Protection: Protect subgrades

from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the Resident Engineer.

# C. Building Earthwork:

- 1. Excavation shall be accomplished as required by drawings and specifications.
- 2. Excavate foundation excavations to solid undisturbed subgrade.
- 3. Remove loose or soft materials to a solid bottom.
- 4. Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
- 5. Do not tamp earth for backfilling in footing bottoms, except as specified.
- 6. Slope grades to direct water away from excavations and to prevent ponding.
- 7. Capillary water barrier (granular fill) under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor.
- 8. Ensure that footing subgrades have been inspected and approved by the Geotechnical Engineer prior to concrete placement.
- D. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. When unsuitable material is

encountered and removed, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on volume in cut section only.

# 1. Site Grading:

- a. Provide a smooth transition between adjacent existing grades and new grades.
- b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
  - 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
  - 2) Walks: Plus or minus 25 mm (1 inch).
  - 3) Pavements: Plus or minus 13 mm (1 inch).
- d. Grading Inside Building Lines: Finish subgrade to a tolerance of  $13\ \text{mm}\ (1/2\ \text{inch})$  when tested with a 3000 mm (10 foot) straightedge.

## 3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by Resident Engineer.
- B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.
- C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment

within 3000 mm (10 feet) of new or existing building walls without prior approval of Resident Engineer. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below:

- 1. Fills, Embankments, and Backfill
  - a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with ASTM D69897 percent.
  - b. Landscaped areas, top 400 mm (16 inches), ASTM D698 90 percent.
  - c. Landscaped areas, below 400 mm (16 inches) of finished grade, ASTM D698 90 percent.
- 2. Natural Ground (Cut or Existing)
  - a. Under building slabs, steps and paved areas, top 150 mm (6 inches), ASTM D698 95 percent.
- D. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.

# 3.4 GRADING:

A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.

- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (10 feet).
- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.

#### 3.5 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- C. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

# 3.6 CLEAN UP:

A. Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center.

----- E N D -----